Dr. Rasool Taban | Statistical Modeling and Simulation | Best Researcher Award
University of Lisbon | Portugal
Dr. Rasool Taban, Ph.D, is a distinguished Data Scientist currently affiliated with Technical University Institute – University of Lisbon, where he continues to advance the frontiers of Artificial Intelligence and Data Science. His academic journey began in Computer Engineering and evolved into a profound focus on Artificial Intelligence during his M.Sc. studies at the University of Tehran, where he graduated with honors in Artificial Intelligence and Robotics. His early research centered on developing an automated screening system designed to assist in diagnosing Autism Spectrum Disorder in children, demonstrating his ability to merge technology with meaningful social impact. Dr. Taban recently earned his Industrial Ph.D. at Institute – University of Lisbon, funded by the prestigious Marie Curie BIGMATH project, where his research specialized in addressing one of the most persistent challenges in statistical learning-imbalanced data. He successfully developed three novel balancing techniques, each tailored to optimize performance across different variable classes, making significant contributions to data reliability and analytical accuracy in machine learning models. With two published journal papers indexed in Scopus and SCI, Dr. Taban’s scholarly work reflects both academic rigor and applied innovation. He has also participated in multiple research and industry projects, collaborating with institutions such as the SDG Group, CIF/N26, Evenco International, and CTAD–Tehran Autism Center. His involvement as part of the editorial team for the International Conference on Robotics and Mechatronics (ICRoM) further underscores his leadership in advancing interdisciplinary research. Dr. Taban’s primary research interests include imbalanced data, statistical learning, data science, and financial data modeling. His contributions have not only expanded methodological knowledge in statistical computing but have also bridged the gap between theoretical frameworks and real-world data-driven applications, reflecting his commitment to excellence in both academia and industry.
Profiles: Google Scholar | Linked In
Featured Publications
Taban, R., Nunes, C., & Oliveira, M. R. (2023). RM-SMOTE: A new robust balancing technique.
Taban, R., Nunes, C., & Oliveira, M. R. (2025). Mixed-robROSE: A novel balancing technique tailored for mixed-type datasets.
Bozorgnia, F., Arakelyan, A., & Taban, R. (2023). Graph-based semi-supervised learning for classification of imbalanced data. Submitted to Conference ENUMATH.
Shahri, M. A., & Taban, R. (2021). ML revolution in NLP: A review of machine learning techniques in natural language processing. Journal of Applied Intelligent Systems & Information Sciences (JAISIS), 2(1), 2.
Taban, R., Parsa, A., & Moradi, H. Tip-toe walking detection using CPG parameters from skeleton data gathered by Kinect. In International Conference on Ubiquitous Computing and Ambient Intelligence (pp. 9).