Ching Chih Tsai | Fuzzy Statistics and Uncertainty Modelling | Best Researcher Award

Prof. Ching Chih Tsai | Fuzzy Statistics and Uncertainty Modelling | Best Researcher Award

Prof. Ching Chih Tsai |  National Chung Hsing University | Taiwan

Prof. Ching Chih Tsai is a distinguished academic in electrical engineering and control systems, currently serving as a Life Distinguished Professor at the Department of Electrical Engineering, National Chung Hsing University (NCHU), Taiwan. He earned his Ph.D. from Northwestern University in 1991. Dr. Tsai has held significant leadership roles, including serving as the President of the Chinese Automatic Control Society (CACS), the Robotics Society of Taiwan (RST), and the International Fuzzy Systems Association (IFSA). He has also been a Board of Governors member of IEEE Systems, Man, and Cybernetics Society (SMCS) and is currently the Dean of the College of Electrical Engineering and Computer Science at NCHU. An IEEE Fellow, his research focuses on intelligent control systems, mobile robotics, and automation intelligence. Dr. Tsai has published over 700 technical articles, with more than 20 in the International Journal of Fuzzy Systems since 2005. His recent work includes a 2025 paper on intelligent adaptive formation control for multi-quadrotors, introducing a hybrid controller combining Output Recurrent Fuzzy Broad Learning Systems (ORFBLS), reinforcement learning, and adaptive backstepping sliding mode control. According to Scopus, he has an h-index of 29, with 3,902 citations from 272 documents.

Profiles: Scopus Google Scholar Orcid

Featured Publications

Rospawan, A., Tsai, C.-C., & Hung, C.-C. (2025). Two-layer intelligent learning control using output recurrent fuzzy neural long short-term memory broad learning system with RMSprop. IEEE Access.

Tsai, C.-C., Hung, C.-C., Mao, C.-F., Wu, H.-S., & Chen, C.-H. (2025). Fuzzy neural LSTM-RBLS for fractional-order PID sliding-mode motion control of autonomous mobile robots with four ISID wheels. International Journal of Fuzzy Systems.

Tsai, C.-C., Mao, C.-F., & Hussain, K. (2025). Intelligent adaptive formation control using ORFBLS and reinforcement learning for uncertain tilting multi-quadrotors. International Journal of Fuzzy Systems. =

Rospawan, A., Tsai, C.-C., & Hung, C.-C. (2025). Intelligent MIMO ORFBLS-based setpoint tracking control with its application to temperature control of an industrial extrusion barrel. International Journal of Fuzzy Systems.

Tsai, C.-C., Huang, H.-C., Chen, H.-Y., Hung, C.-C., & Chen, S.-T. (2024). Intelligent collision-free formation control of ball-riding robots using output recurrent broad learning in industrial cyber-physical systems. IEEE Transactions on Industrial Cyber-Physical Systems.