Michael Pitton | Descriptive and Inferential Statistics | Best Researcher Award

Prof. Dr. Michael Pitton | Descriptive and Inferential Statistics | Best Researcher Award

Medical University of Mainz | Germany

Professor Dr. Michael Pitton is a distinguished German physician-scientist and expert in diagnostic and interventional radiology. A graduate of the Johannes Gutenberg University Mainz, he completed his medical studies and advanced clinical training in internal medicine, cardiology, radiology, and neuroradiology at leading German university hospitals, including the University Medical Center Mainz and the Deutsches Herzzentrum Berlin. His academic achievements include a habilitation on functional and morphological aspects of endovascular aneurysm therapy, followed by his appointment as university lecturer and senior consultant in interventional radiology. Professor Pitton has held successive leadership positions and currently serves as the Acting Director of the Department of Diagnostic and Interventional Radiology and Head of the Section of Interventional Radiology at the University Medical Center Mainz. He also holds European Board Certification in Interventional Radiology (EBIR) and the European Certification for Endovascular Specialists (CIRSE) and is a certified DEGIR instructor across all modules. Combining clinical excellence with managerial insight, he earned a Master of Health Business Administration, reflecting his engagement in healthcare management and innovation. Professor Pitton has an extensive scientific record, with approximately 127 publications, an h-index of around 33, and more than 6,771 citations, underscoring his influence in vascular and interventional radiology. His research contributions have advanced the understanding and treatment of aneurysms, transjugular intrahepatic portosystemic shunt (TIPS) interventions, and image-guided oncologic therapies. Recognized with numerous national and international awards, his work bridges academic medicine, translational research, and health leadership. Professor Pitton exemplifies excellence in clinical radiology, academic scholarship, and interdisciplinary collaboration, contributing significantly to the development of interventional radiology in Europe.

Profiles: Scopus | Orcid

Featured Publications

Graafen, D., Bart, W., Halfmann, M. C., Müller, L., Hobohm, L., Yang, Y., Neufang, A., Espinola-Klein, C., Pitton, M. B., Kloeckner, R., Varga-Szemes, A., & Emrich, T. (2022). In vitro and in vivo optimized reconstruction for low-keV virtual monoenergetic photon-counting detector CT angiography of lower legs.

Gairing, S. J., Kuchen, R., Müller, L., Cankaya, A., Weerts, J., Kapucu, A., Sachse, S., Zimpel, C., Stoehr, F., Pitton, M. B., Mittler, J., Straub, B. K., Marquardt, J. U., Schattenberg, J. M., Labenz, C., Kloeckner, R., Weinmann, A., Galle, P. R., Wörns, M. A., & Foerster, F. (2022.). 13C-Methacetin breath test predicts survival in patients with hepatocellular carcinoma undergoing transarterial chemoembolization.

Müller, L., Hahn, F., Mähringer-Kunz, A., Stoehr, F., Gairing, S. J., Foerster, F., Weinmann, A., Galle, P. R., Mittler, J., Pinto Dos Santos, D., Pitton, M. B., Düber, C., Fehrenbach, U., Auer, T. A., Gebauer, B., & Kloeckner, R. (2022). Prevalence and clinical significance of clinically evident portal hypertension in patients with hepatocellular carcinoma undergoing transarterial chemoembolization.

Moumita Mukherjee | Machine Learning and Statistics | Best Researcher Award

Dr. Moumita Mukherjee | Machine Learning and Statistics | Best Researcher Award

Charite-University Medicine Berlin | Germany

Dr. Moumita Mukherjee is an accomplished health economist and digital health researcher with expertise in health systems research, machine learning applications in healthcare, and interdisciplinary teaching. She holds a PhD in Economics from the University of Calcutta, an MBA in Entrepreneurship, Innovation and Project Development from International Telematic University, and an MSc in Data Science from the University of Europe for Applied Sciences, Germany. Her professional experience spans both academic and applied research environments, including positions at Charite-University Medicine Berlin, the Indian Institute of Public Health in Shillong, and the Berlin School of Business and Innovation. She has contributed extensively to global health research focusing on digital transformation, equity in healthcare access, and the use of data-driven methods for improving health outcomes. Her body of work includes numerous peer-reviewed publications in leading journals such as Scientific Reports, Journal of Health, Population and Nutrition, Journal of Health Management, and International Journal for Equity in Health, as well as book chapters and authored volumes addressing child health, nutrition, and health equity. In her current role at Charite-University Medicine Berlin, she lectures on digital health and artificial intelligence, supervises master’s theses, and mentors students. With advanced technical proficiency in Python, STATA, and NVivo, she applies econometric, machine learning, and deep learning models to address complex public health and policy questions. Her interdisciplinary approach integrates health economics, digital innovation, and policy analysis to support equitable and sustainable health systems worldwide. Through her research, teaching, and mentorship, Dr. Moumita Mukherjee continues to bridge data science and health economics to shape the future of evidence-based global health policy and digital healthcare transformation.

Profiles: Google Scholar | Orcid

Featured Publications

Kiran Sree Pokkuluri | Machine Learning and Statistics | Excellence in Research Award

Prof. Dr. Kiran Sree Pokkuluri | Machine Learning and Statistics | Excellence in Research Award

Shri Vishnu Engineering College For Women | India

Prof. Dr. Kiran Sree Pokkuluri is a distinguished academician, researcher, and innovator in the field of Artificial Intelligence and Machine Learning with an illustrious career of academic and research excellence. Currently serving as Professor and Head of the Department of Computer Science and Engineering at Shri Vishnu Engineering College for Women, he has significantly contributed to advancing computational intelligence and data-driven innovation in academia and industry. He holds a Ph.D. in Artificial Intelligence from JNTU-Hyderabad and has an impressive scholarly record with over 100 research publications in reputed SCI and Scopus-indexed journals, a citation count exceeding 653, an h-index above 13, and an Documents exceeding 152, reflecting the global impact of his research. His research areas include Deep Learning, Healthcare Analytics, Bioinformatics, IoT Power Optimization, Big Data Analytics, and Cloud Computing. Dr. Sree has authored six textbooks with ISBNs on Artificial Intelligence, Machine Learning, and Deep Learning, and has filed and published six patents in the domains of AI and intelligent systems. His innovations such as the Hybrid Deep Neural ZF Network (HDNZF-Net) have set new benchmarks in real-time speech enhancement for speech-impaired individuals and IoT optimization. He has completed five major funded projects and collaborated with premier institutions including Stanford University through the UIF program, fostering cross-disciplinary innovation. A recognized thought leader, Dr. Sree serves as Editor-in-Chief, editorial board member, and reviewer for multiple international journals. His remarkable achievements have earned him prestigious recognitions like the Bharat Excellence Award and Rashtriya Ratan Award, and he has been featured in Marquis Who’s Who in the World. As Global Vice President of the World Statistical Data Analysis Research Association (WSA) and a member of professional bodies such as IEEE, ISTE, CSI, and IAENG, Dr. Kiran Sree continues to inspire excellence in AI-driven research, education, and technological innovation.

Profiles: Scopus Google Scholar | Orcid

Featured Publications

Venkatachalam, B., Pokkuluri, K. S., Suguna Kumar, S., Dhandapani, A., & Bhonsle, M. (2025). Adaptive fuzzy heuristic algorithm for dynamic data mining in IoT integrated big data environments. Journal of Fuzzy Extension and Applications, 6(3), 615–636.

Pokkuluri, K. S., Sarkar, P., Birchha, V., Mathariya, S. K., Veeramachaneni, V., & others. (2025). Intelligent reasonable optimization for virtual machine provisioning in hybrid cloud using fuzzy AHP and cost-effective autoscaling. SN Computer Science, 6(7), 1–15.

Sivanuja, M., Raju, P. J. R. S., Prasad, M., RR, P. B. V., Kumar, K. S., & Pokkuluri, K. S,. (2025). A novel ensemble-based deep learning framework combining CNN and transfer learning models for enhanced wildfire detection. In Proceedings of the 2025 International Conference on Computational Robotics, Testing and Applications.

Alzubi, J. A., Pokkuluri, K. S., Arunachalam, R., Shukla, S. K., Venugopal, S., & others. (2025). A generative adversarial network-based accurate masked face recognition model using dual scale adaptive efficient attention network. Scientific Reports, 15(1), 17594.

Pokkuluri, K. S., Chandanan, A. K., Mishra, A. K., Jyothi, D., Lavanya, M. S. S. L., & others. (2025). Deep learning-enhanced intrusion detection and privacy preservation for IIoT networks. In Proceedings of the 2025 4th International Conference on Distributed Computing and Electrical Systems.

Om Sambhaji Shelke | Operations Research and Statistical Optimization | Excellence in Research Award

Dr. Om Sambhaji Shelke | Operations Research and Statistical Optimization | Excellence in Research Award

Sinomune Pharmaceutical Co. Ltd | China

Dr. Om Sambhaji Shelke is a highly accomplished pharmaceutical scientist with extensive expertise in the formulation and development of topical, semisolid, solid, and liquid drug products. Holding a Ph.D. in Pharmacy and an M. Pharmacy from Savitribai Phule Pune University, he has over a decade of experience across global markets including the US, EU, China, Hong Kong, and India. Currently serving as Chief Scientist at Sinomune Pharmaceutical Co. Ltd. in Wuxi, Jiangsu, China, Dr. Shelke leads the development of generic topical products for the NMPA market. He is skilled in Quality by Design (QbD)-based development of creams, ointments, gels, shampoos, and solutions, with specialization in novel formats such as emulgel, organogel, nanogel, solid lipid nanoparticles, suspensions, and toothpaste. He also holds three granted patents and has published multiple scientific and technical articles. Throughout his career, he has received multiple awards recognizing his innovation, knowledge sharing, and leadership, including the StarFire Award. Dr. Shelke has held pivotal roles at leading pharmaceutical and consumer healthcare companies such as Prinbury Biopharm Co. Ltd., Encube Ethicals Pvt Ltd., Bright Future Pharmaceuticals Ltd., Unilever Industries Pvt Ltd., Abbott Healthcare Pvt Ltd., Dr. Reddy’s Laboratories, and Glenmark Pharmaceuticals Ltd., contributing to both regulatory-compliant NDA, ANDA, and 505(b)(2) products as well as OTC, cosmetic, and personal care formulations. His professional journey reflects a consistent commitment to scientific excellence, innovative product development, and leadership in cross-functional teams, positioning him as a prominent figure in global pharmaceutical research and development.

Profiles: Google Scholar Orcid

Featured Publications

F. Jie, O. Shelke, Z. Yijie, C. Yulan, & L. Yongbo. (2025). Q1 and Q2 selection, Q3, IVRT, IVPT, pharmacokinetic and pharmacodynamic evaluation of topical generic product. Drug Development and Industrial Pharmacy, 51(6), 555–565.

J. Feng, O. S. Shelke, Y. Chen, Z. Zhang, X. Tang, & Y. Zhu. (2025). IVRT and IVPT of desonide lotion and cream: Correlation with human bioequivalence study. Journal of Pharmaceutical Innovation, 20(5), 196.

S. Krishna Phani Chandra, S. Om Sambhaji, & N. Shorgar. (2025). Quantification of leniolisib in rat plasma using LC-MS/MS: Method development, validation, and pharmacokinetic study. African Journal of Biological Sciences, 7(7), 121–142.

S. Om. (2025). Editorial article: The transformative impact of AI in pharmaceutical drug product development. Insights of Pharmatech, 1(2), 1.

S. Gadge, O. S. Shelke, R. Pingale, P. Palande, S. Tandale, P. Sonawane, … (2025). Development and evaluation of a polyherbal neem-based emulgel enriched with herbal oils for enhanced topical delivery and antibacterial efficacy. Journal of Chemical Health Risks, 15(3), 2189–2209.

Guo Tian | Machine Learning and Statistics | Best Researcher Award

Assoc Prof. Dr. Guo Tian | Machine Learning and Statistics | Best Researcher Award

Tsinghua University | China

Assoc Prof. Dr. Guo Tian is an accomplished young chemical engineer whose research lies at the frontier of sustainable catalysis and CO₂/CO conversion. He earned his Bachelor’s degree in Chemical Engineering under Prof. Xuezhi Duan at the East China University of Science and Technology and pursued his doctoral studies in Chemical Engineering at Tsinghua University under the guidance of Prof. Fei Wei. Following his doctoral training, he joined Southwest Jiaotong University as an Associate Professor and Principal Investigator. At only twenty-five years of age, Guo has led pioneering work on high-pressure thermo-catalytic systems, including the design of a reactor capable of stable operation at up to 60 bar integrated with surface-enhanced infrared absorption spectroscopy (SEIRAS) for in-situ monitoring of reaction intermediates. His studies have revealed critical mechanistic pathways in CO/CO₂ conversion using bifunctional catalysts, identifying oxygenate intermediates as key to improving the traditional methanol-to-hydrocarbons (MTH) mechanism. Drawing inspiration from biological systems, he has advanced the concept of bio-inspired multifunctional catalysts and introduced the innovative idea of “catalytic shunt” strategies to enhance selectivity and efficiency. Combining experimental research with density-functional theory (DFT) and micromodel simulations, his work bridges molecular-level understanding with reactor-scale engineering. Dr. Tian has authored numerous influential publications in high-impact journals such as Nature Sustainability, Nature Communications, ACS Catalysis, and the Journal of the American Chemical Society. Notable among these are “Efficient syngas conversion via catalytic shunt” (Nature Sustainability), and “Upgrading CO₂ to sustainable aromatics via perovskite-mediated tandem catalysis” (Nature Communications). According to his Scopus profile, he has authored 14 documents, accumulated around 297 citations, and holds an h-index of 9, reflecting a strong and growing impact in the field. His expertise includes thermochemical measurement and data analysis, catalytic materials design, reactor and reaction-system development, in-situ spectroscopy (SEM, XRD, XPS, XAS), and DFT-based theoretical modeling. Integrating theory, advanced characterization, and engineering innovation, Guo Tian’s vision focuses on transforming CO₂ and CO into high-value sustainable fuels such as aviation fuel components, contributing to global carbon-neutral energy goals. Through his scientific rigor, leadership, and creativity, he has rapidly emerged as a rising star in heterogeneous catalysis and sustainable chemical engineering.

Profiles: Scopus Google Scholar Orcid

Featured Publications

M. Zhao, Q. Wu, X. Chen, H. Xiong, G. Tian, L. Yan, F. Xiao, & F. Wei. (2025). Entropy-governed zeolite intergrowth. Journal of the American Chemical Society.

Z. Wang, X. Liu, G. Tian, Z. Wang, L. Li, F. Lu, Y. Yu, Z. Li, F. Wei, & C. Zhang. (2025). Research advances in coal-based syngas to aromatics technology. Clean Energy, 9(5), 136–152.

J. He, G. Tian, D. Liao, Z. Li, Y. Cui, F. Wei, C. Zeng, & C. Zhang. (2025). Mechanistic insights into methanol conversion and methanol-mediated tandem catalysis toward hydrocarbons. Journal of Energy Chemistry.

H. Xiong, Y. C. Wang, X. Liang, M. Zhao, G. Tian, G. Wang, L. Gu, & X. Chen. (2025). In situ quantitative imaging of nonuniformly distributed molecules in zeolites. Journal of the American Chemical Society, 147(32), 28965–28972.

Z. Li, J. Chen, G. Xu, Z. Tang, X. Liang, G. Tian, F. Lu, Y. Yu, Y. Wen, & J. Yang. (2025). Constructing three-dimensional covalent organic framework with aea topology and flattened spherical cages. Chemistry of Materials, 37(5), 1942–1948.

Fatih UCUN | Regression and Correlation Analysis | Best Researcher Award

Prof. Dr. Fatih UCUN | Regression and Correlation Analysis | Best Researcher Award

Suleyman Demirel University | Turkey

Prof. Dr. Fatih Ucun is a distinguished physicist specializing in atomic and molecular physics, with expertise in electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy. He completed his B.Sc. and M.Sc. in Physics at Atatürk University and earned his Ph.D. from Ondokuz Mayıs University. He is a full professor in the Department of Physics at Suleyman Demirel University in Isparta, Turkey. Prof. Ucun has made significant contributions to computational chemistry, molecular modeling, and quantum mechanics, bridging theoretical insights with practical applications in material science and nanotechnology through pioneering studies on molecular electronic structures and quantum chemical simulations. He has authored 91 publications, cited 883 times, and holds an h-index of 16, reflecting his substantial impact in the field. In addition to his research, he has published four books and serves on editorial boards of scientific journals, demonstrating his leadership and influence in the academic community. His work has advanced the understanding of atomic-level interactions and energy transfer mechanisms, while mentoring future scientists and enriching scientific progress in physical chemistry and computational modeling.

Profiles: Scopus Google Scholar 

Featured Publications

Ucun, F., Isik, Y. E., & Tiryaki, O. (2025). An approach to description of isotropic hyperfine interaction constants in the fluorinated nitrobenzene and nitrophenol radical anions: DFT calculations vs. experiment. Russian Journal of Physical Chemistry A, 99, 2498–2505.

Yolburun, H., & Ucun, F. (2023). EPR analysis of dinitrobenzoic acid anion radicals. International Journal of Computational and Experimental Science and Technology.

Ucun, F. (2023). EPR analysis of dinitrobenzoic acid anion radicals. International Journal of Computational and Experimental Science and Technology.

Ucun, F., & Alakuş, N. (2022). Enthalpies and activation energies of several gas reactions by intrinsic reaction coordinate (IRC) calculations. El-Cezeri, 9(2), 576–583.

Ucun, F., & Küçük, S. (2022). Triafulvalen, pentafulvalen ve heptafulvalenin katyon ve anyon radikallerinin EPR aşırı ince-yapı yapıları: Bir teorik çalışma. Süleyman Demirel University Faculty of Arts and Science Journal of Science.

BHASKAR A | Survival Analysis and Reliability | Best Researcher Award

Mr. BHASKAR A | Survival Analysis and Reliability | Best Researcher Award

SRM Institute of Science and Technology (SRMIST) | India

Mr. Bhaskar A is a highly accomplished academic and industry professional with over two decades of experience in mechanical engineering, manufacturing, and Agile methodologies. Currently serving as an Assistant Professor (Selection Grade) and Scrum Master at SRM Institute of Science and Technology (SRMIST), Ramapuram, he has played a pivotal role in integrating Agile practices into engineering education, mentoring teams, and enhancing organizational productivity. His educational journey includes an MBA from Annamalai University, an M.E. in Manufacturing Engineering from Madras Institute of Technology, and a B.E. in Mechanical Engineering from the University of Madras, and he is presently pursuing a part-time Ph.D. in Lean Manufacturing from Anna University. Over his career, he has held positions as an Assistant Professor at several engineering colleges and worked in industry roles including Production Engineer, contributing to process improvements and team management. Dr. Bhaskar has made significant research contributions in lean manufacturing, mechanical properties of materials, and the application of Agile methodologies, with numerous publications in journals and conferences. Beyond research and teaching, he is dedicated to continuous professional development, having completed multiple Faculty Development Programs, workshops, and online courses in project management, digital manufacturing, materials science, and other emerging technologies, reflecting his commitment to advancing knowledge and fostering innovation in engineering education.

Profiles:  Google Scholar | Linked In

Featured Publications

Alexpandian, A. S., Rajesha, M., Loganathan, P., Hariram, V., & [Y.R.]. (2023). Optimization of machining parameters to improve surface quality in the abrasive water jet cutting of AA6351 aluminium alloy. International Journal of Vehicle Structures & Systems, 15(4), 547–551.

Devaraju, A. B. A. (2025). Integrated ERP lean model for quality enhancement and operational excellence in SME based automotive mould manufacturing. Scientific Reports, 15(35979), 1–16.

Jeffrey, V. P. S. S. J. A., Govindaraj, S., Mahesh, R., Bhaskar, A., Arunkumar, K., & [R.]. (2025). Influence of Fe2O3 nanoparticle-infused waste cooking oil biodiesel on the emission, performance, and combustion aspects towards a cleaner environment. Journal of Environmental Nanotechnology, 14(3), 466–476.

Yoganjaneyulu, G., Perumal, V. S., Sivasankaran, S., Annamalai, B., & Niranjan, T. (2025). Strategic method to enhancing the formability of Nitinol foils via micro-incremental sheet forming processes and evaluation of structure–property. Metals and Materials International, 1–15.

Hepsi, B. M. J., Bhaskar, A., Rekha, R. S., & Vasanthi, P. (2024). Wear behavior of hemp-flax-glass fibre hybrid composite material. Advances in Additive Manufacturing Technologies, 75–79.

Oleg Selyugin | Big Data and Statistical Analytics | Big Data Analytics Award

Dr. Oleg Selyugin | Big Data and Statistical Analytics | Big Data Analytics Award

Joint Institute for Nuclear Research | Russia

Dr. Oleg Selyugin is a Russian empirical and theoretical physicist with a distinguished career in high-energy hadron scattering and the structure of hadrons. After completing his studies at the Physics Department of Moscow State University, he joined the Joint Institute for Nuclear Research (JINR), first as a probationer and researcher at the Laboratory of Nuclear Problems, and later at the Bogoliubov Theoretical Laboratory (BTL), where he now serves as a leading scientist. At BTL, he earned his Ph.D. with the thesis “High energy elastic hadron-hadron scattering in a wide momentum transfer region,” and later obtained his Doctor of Physics and Mathematics degree with the thesis “The structure of high-energy amplitude of the elastic hadron-hadron scattering in the diffraction region.” Dr Selyugin has been recognized with multiple International Prizes of JINR for his outstanding contributions to polaron physics, hadron physics, and high-energy physics. His primary research interests include the structure of hadrons (PDFs, GPDs, form-factors), phenomenology of high-energy physics (differential cross sections, spin phenomena), models of extra dimensions (d-brane gravity), and nonlinear effects. He has been actively involved in interpreting experimental results from the CERN LHC, particularly the TOTEM and ATLAS Collaborations. His theoretical work integrates electromagnetic and gravitational form-factors derived from novel t-dependent GPDs, as well as soft and cross-even pomeron contributions, within dispersion-relation-based frameworks. With over 180 scientific papers, Dr Selyugin has made a profound and lasting impact on the understanding of elastic hadron scattering at high energies. Although specific bibliometric indicators such as 17 h-index, 78 documents, and 815 citations vary across databases, his scientific influence is widely recognized within the international physics community. He continues his pioneering research at JINR in Dubna, Russia.

Profiles: Scopus | Orcid

Featured Publications

Selyugin, O. V. (2024). Unified description of elastic hadron scattering at low and high energies. Physics of Atomic Nuclei, 87(S2), S349–S362.

Kuruba Chandrakala | Machine Learning and Statistics | Best Researcher Award

Dr. Kuruba Chandrakala | Machine Learning and Statistics | Best Researcher Award

Siddhartha Academy of Higher Education | India

Dr. Kuruba Chandrakala is an emerging researcher in the domains of computer vision, deep learning, and medical image processing, currently serving as Assistant Professor (Selection Grade) in the CSE department at Siddhartha Academy of Higher Education, Vijayawada. She earned her Ph.D. from NIT Tiruchirappalli, preceded by M.Tech in Computer Science and Engineering with distinction from JNTU Kakinada and B.Tech in the same discipline from JNTU Anantapur. She has qualified both NET and APSET examinations. Her professional trajectory includes roles as Head of Department (CSE-AIML) at Vignan’s Nirula Institute of Technology & Science for Women and previous teaching appointments at VNITSW and SITAM, along with industry experience as a System Engineer with Tata Consultancy Services. Her publication record comprises five Scopus indexed papers, four of which are in SCIE journals, two IEEE conference papers, and one book chapter; she also holds one patent. Her Scopus metrics include an h-index of 4, 10 documents, and 150 citations. Her research has addressed areas such as diabetic retinopathy segmentation, robust blood vessel detection, and image enhancement through deep learning architectures. She teaches courses including Deep Learning, Machine Learning, Big Data Analytics, Cloud Computing, and programming in C, C++, Java, and Python. She has earned numerous certifications from NPTEL, Coursera, Microsoft, IBM, and Wipro and received awards such as the NPTEL Discipline Star and Wipro Project Excellence Award. Her leadership and mentoring roles include serving as a mentor for Wipro TalentNext, nodal officer for Microsoft Upskilling and APSCHE virtual internship programs, and coordinator for various hackathons. She is a life member of professional bodies such as CSI, ISTE, IAENG, and IET, and has delivered several invited and guest lectures, contributing significantly to academic excellence and research advancement.

Profiles: Scopus Google Scholar Orcid

Featured Publications

Chandrakala, K., & Gopalan, N. P. (2025). 3DECNN: A novel method for segmentation of diabetic retinopathy in retinal fundus images using 3D-edge CNN. Neural Computing and Applications.

Kuruba, C., Sharmila, S. K., Mounika, V., Aswini, D., & Poojitha, G. (2023). Three layered security model to prevent credit card fraud using LBPH and CNN-ResNet architecture. International Conference on Hybrid Intelligent Systems, 422–428.

Dharmaiah, K., Mebarek-Oudina, F., Sreenivasa Kumar, M., & Chandra Kala. (2023). Nuclear reactor application on Jeffrey fluid flow with Falkner-Skan factor, Brownian and thermophoresis, non-linear thermal radiation impacts past a wedge. Journal of the Indian Chemical Society, 100(2), 117.

Kuruba, C., & Gopalan, N. P. (2023). Robust blood vessel detection with image enhancement using relative intensity order transformation and deep learning. Biomedical Signal Processing and Control, 86, 105195.

Kuruba, C., Pushpalatha, N., Ramu, G., Suneetha, I., Kumar, M. R., & Harish, P. (2023). Data mining and deep learning-based hybrid health care application. Applied Nanoscience, 13(3), 2431–2437.

Tushar Bhoite | Bayesian Networks and Decision Theory | Best Researcher Award

Dr. Tushar Bhoite | Bayesian Networks and Decision Theory | Best Researcher Award

Dr. Tushar Bhoite | MES’s Wadia College of Engineering | India

Dr. Tushar Devidas Bhoite, Ph.D. in Mechanical Technology, M.E. in Machine Design, with over sixteen years of professional experience (including twelve in the automobile industry and four in academics), is a leading researcher and practitioner in integrating advanced IT technologies in auto-component manufacturing. His research interests encompass Industry 4.0, Industrial Internet of Things (IIoT), Digital Twin systems, Generative AI, predictive maintenance, neural and Bayesian networks, real-time monitoring, optimization and efficiency improvements in production environments. To date, he has authored 6 international journal papers and 3 international conference papers, co-authored 2 textbooks, and filed 2 patents, contributing to both theoretical and applied advancements. His master’s project, awarded from RGSTC Mumbai, stands as a landmark in his research portfolio, he has an h-index of 1 and over 1 citations as per his Scopus profile, reflecting strong scholarly impact. In his industrial roles, Dr. Bhoite has successfully led IOT implementations in assembly and press shops, improved Overall Equipment Effectiveness, standardized work systems, deployed TPM and Kaizen methodologies, and developed innovative solutions such as a wet-waste treatment machine. He currently serves as Assistant Professor in Automation & Robotics Engineering at MES’s Wadia College of Engineering, Pune, and continues consulting in production efficiency, resource optimization, and technology integration in manufacturing enterprises.

Profiles: Scopus Google Scholar Orcid

Featured Publications

Bhoite, T. D., Pawar, P. M., & Gaikwad, B. D. FEA based study of effect of radial variation of outer link in a typical roller chain link assembly. International Journal of Mechanical and Industrial Engineering, 1, 65–70.

Bhoite, T. D., & Buktar, R. B. (2025). Productivity enhancement in Indian auto component manufacturing supply chain with IoT using neural networks. Production, 35, e20240047.

Bhoite, T. D., Buktar, R. B., Mahalle, P. N., Khond, M. P., Pise, G. S., & More, Y. Y. (2025). Productivity enhancement in the Indian auto component manufacturing supply chain through IoT, digital twins with generative AI, and stacked encoder-enhanced neural networks. Operations Research Forum, 6(4), 143.

Bhoite, D. T., & Buktar, R. (2025). An investigation into revolutionizing auto component manufacturing: An IoT-based approach for improved productivity and waste elimination. Journal of Information Systems Engineering and Management, 10(9s), 409–429.

Bhoite, D. T., Buktar, R., & Kannukkadan, G. (2024). Leveraging IoT in auto component manufacturing to monitor surface roughness and tool temperature. Journal of Electrical Systems, 20(2s), 563–574.*