Moumita Mukherjee | Machine Learning and Statistics | Best Researcher Award

Dr. Moumita Mukherjee | Machine Learning and Statistics | Best Researcher Award

Charite-University Medicine Berlin | Germany

Dr. Moumita Mukherjee is an accomplished health economist and digital health researcher with expertise in health systems research, machine learning applications in healthcare, and interdisciplinary teaching. She holds a PhD in Economics from the University of Calcutta, an MBA in Entrepreneurship, Innovation and Project Development from International Telematic University, and an MSc in Data Science from the University of Europe for Applied Sciences, Germany. Her professional experience spans both academic and applied research environments, including positions at Charite-University Medicine Berlin, the Indian Institute of Public Health in Shillong, and the Berlin School of Business and Innovation. She has contributed extensively to global health research focusing on digital transformation, equity in healthcare access, and the use of data-driven methods for improving health outcomes. Her body of work includes numerous peer-reviewed publications in leading journals such as Scientific Reports, Journal of Health, Population and Nutrition, Journal of Health Management, and International Journal for Equity in Health, as well as book chapters and authored volumes addressing child health, nutrition, and health equity. In her current role at Charite-University Medicine Berlin, she lectures on digital health and artificial intelligence, supervises master’s theses, and mentors students. With advanced technical proficiency in Python, STATA, and NVivo, she applies econometric, machine learning, and deep learning models to address complex public health and policy questions. Her interdisciplinary approach integrates health economics, digital innovation, and policy analysis to support equitable and sustainable health systems worldwide. Through her research, teaching, and mentorship, Dr. Moumita Mukherjee continues to bridge data science and health economics to shape the future of evidence-based global health policy and digital healthcare transformation.

Profiles: Google Scholar | Orcid

Featured Publications

Kiran Sree Pokkuluri | Machine Learning and Statistics | Excellence in Research Award

Prof. Dr. Kiran Sree Pokkuluri | Machine Learning and Statistics | Excellence in Research Award

Shri Vishnu Engineering College For Women | India

Prof. Dr. Kiran Sree Pokkuluri is a distinguished academician, researcher, and innovator in the field of Artificial Intelligence and Machine Learning with an illustrious career of academic and research excellence. Currently serving as Professor and Head of the Department of Computer Science and Engineering at Shri Vishnu Engineering College for Women, he has significantly contributed to advancing computational intelligence and data-driven innovation in academia and industry. He holds a Ph.D. in Artificial Intelligence from JNTU-Hyderabad and has an impressive scholarly record with over 100 research publications in reputed SCI and Scopus-indexed journals, a citation count exceeding 653, an h-index above 13, and an Documents exceeding 152, reflecting the global impact of his research. His research areas include Deep Learning, Healthcare Analytics, Bioinformatics, IoT Power Optimization, Big Data Analytics, and Cloud Computing. Dr. Sree has authored six textbooks with ISBNs on Artificial Intelligence, Machine Learning, and Deep Learning, and has filed and published six patents in the domains of AI and intelligent systems. His innovations such as the Hybrid Deep Neural ZF Network (HDNZF-Net) have set new benchmarks in real-time speech enhancement for speech-impaired individuals and IoT optimization. He has completed five major funded projects and collaborated with premier institutions including Stanford University through the UIF program, fostering cross-disciplinary innovation. A recognized thought leader, Dr. Sree serves as Editor-in-Chief, editorial board member, and reviewer for multiple international journals. His remarkable achievements have earned him prestigious recognitions like the Bharat Excellence Award and Rashtriya Ratan Award, and he has been featured in Marquis Who’s Who in the World. As Global Vice President of the World Statistical Data Analysis Research Association (WSA) and a member of professional bodies such as IEEE, ISTE, CSI, and IAENG, Dr. Kiran Sree continues to inspire excellence in AI-driven research, education, and technological innovation.

Profiles: Scopus Google Scholar | Orcid

Featured Publications

Venkatachalam, B., Pokkuluri, K. S., Suguna Kumar, S., Dhandapani, A., & Bhonsle, M. (2025). Adaptive fuzzy heuristic algorithm for dynamic data mining in IoT integrated big data environments. Journal of Fuzzy Extension and Applications, 6(3), 615–636.

Pokkuluri, K. S., Sarkar, P., Birchha, V., Mathariya, S. K., Veeramachaneni, V., & others. (2025). Intelligent reasonable optimization for virtual machine provisioning in hybrid cloud using fuzzy AHP and cost-effective autoscaling. SN Computer Science, 6(7), 1–15.

Sivanuja, M., Raju, P. J. R. S., Prasad, M., RR, P. B. V., Kumar, K. S., & Pokkuluri, K. S,. (2025). A novel ensemble-based deep learning framework combining CNN and transfer learning models for enhanced wildfire detection. In Proceedings of the 2025 International Conference on Computational Robotics, Testing and Applications.

Alzubi, J. A., Pokkuluri, K. S., Arunachalam, R., Shukla, S. K., Venugopal, S., & others. (2025). A generative adversarial network-based accurate masked face recognition model using dual scale adaptive efficient attention network. Scientific Reports, 15(1), 17594.

Pokkuluri, K. S., Chandanan, A. K., Mishra, A. K., Jyothi, D., Lavanya, M. S. S. L., & others. (2025). Deep learning-enhanced intrusion detection and privacy preservation for IIoT networks. In Proceedings of the 2025 4th International Conference on Distributed Computing and Electrical Systems.

Ahmad Abuhani | Machine Learning and Statistics | Best Researcher Award

Assist Prof. Dr. Ahmad Abuhani | Machine Learning and Statistics | Best Researcher Award

Middle East University | Jordan

Assist Prof. Dr. Ahmad Abuhani is an accomplished Assistant Professor of Interior Design at the Faculty of Engineering and Design, Middle East University, Amman, Jordan, known for his distinguished academic, artistic, and research achievements. He earned his B.Sc., M.Sc., and Ph.D. in Interior Design from the Moscow State University of Applied Arts named after S.G. Stroganov, Russia, where he specialized in interior composition, architectural planning, and the artistic formation of traditional Jordanian housing. His doctoral research, titled “The Construction System and Technical Composition of the Interior Design of the Jordanian Home,” demonstrates his dedication to blending cultural identity with modern design principles. Dr. Abu Hani has held several academic and administrative positions, including Head of the Interior Design Department at Middle East University, Amman University, and Yarmouk University. His teaching expertise covers a wide range of design areas such as architectural drawing, color theory, space planning, and professional practice. His scholarly contributions include publications in international journals and conferences focusing on design aesthetics, visual communication, and creative methodology. His research interests span fine and applied arts, architectural design, descriptive geometry, and color theory. A member of the Fine Artists Association (Amman) and the International Council of Societies of Industrial Design (ICSID), he also serves as a reviewer for Horizon Research Publishing and participates in multiple academic committees and juries. Dr. Abu Hani has exhibited his work in 15 personal and 9 collective exhibitions across Jordan and Russia, receiving prestigious awards including first place in national art competitions and recognition from the Ministry of Culture, Dr. Abu Hani continues to make impactful contributions to the fields of interior design, applied arts, and creative education, combining innovation with cultural and academic excellence.

Profiles: OrcidGoogle Scholar 

Guo Tian | Machine Learning and Statistics | Best Researcher Award

Assoc Prof. Dr. Guo Tian | Machine Learning and Statistics | Best Researcher Award

Tsinghua University | China

Assoc Prof. Dr. Guo Tian is an accomplished young chemical engineer whose research lies at the frontier of sustainable catalysis and CO₂/CO conversion. He earned his Bachelor’s degree in Chemical Engineering under Prof. Xuezhi Duan at the East China University of Science and Technology and pursued his doctoral studies in Chemical Engineering at Tsinghua University under the guidance of Prof. Fei Wei. Following his doctoral training, he joined Southwest Jiaotong University as an Associate Professor and Principal Investigator. At only twenty-five years of age, Guo has led pioneering work on high-pressure thermo-catalytic systems, including the design of a reactor capable of stable operation at up to 60 bar integrated with surface-enhanced infrared absorption spectroscopy (SEIRAS) for in-situ monitoring of reaction intermediates. His studies have revealed critical mechanistic pathways in CO/CO₂ conversion using bifunctional catalysts, identifying oxygenate intermediates as key to improving the traditional methanol-to-hydrocarbons (MTH) mechanism. Drawing inspiration from biological systems, he has advanced the concept of bio-inspired multifunctional catalysts and introduced the innovative idea of “catalytic shunt” strategies to enhance selectivity and efficiency. Combining experimental research with density-functional theory (DFT) and micromodel simulations, his work bridges molecular-level understanding with reactor-scale engineering. Dr. Tian has authored numerous influential publications in high-impact journals such as Nature Sustainability, Nature Communications, ACS Catalysis, and the Journal of the American Chemical Society. Notable among these are “Efficient syngas conversion via catalytic shunt” (Nature Sustainability), and “Upgrading CO₂ to sustainable aromatics via perovskite-mediated tandem catalysis” (Nature Communications). According to his Scopus profile, he has authored 14 documents, accumulated around 297 citations, and holds an h-index of 9, reflecting a strong and growing impact in the field. His expertise includes thermochemical measurement and data analysis, catalytic materials design, reactor and reaction-system development, in-situ spectroscopy (SEM, XRD, XPS, XAS), and DFT-based theoretical modeling. Integrating theory, advanced characterization, and engineering innovation, Guo Tian’s vision focuses on transforming CO₂ and CO into high-value sustainable fuels such as aviation fuel components, contributing to global carbon-neutral energy goals. Through his scientific rigor, leadership, and creativity, he has rapidly emerged as a rising star in heterogeneous catalysis and sustainable chemical engineering.

Profiles: Scopus Google Scholar Orcid

Featured Publications

M. Zhao, Q. Wu, X. Chen, H. Xiong, G. Tian, L. Yan, F. Xiao, & F. Wei. (2025). Entropy-governed zeolite intergrowth. Journal of the American Chemical Society.

Z. Wang, X. Liu, G. Tian, Z. Wang, L. Li, F. Lu, Y. Yu, Z. Li, F. Wei, & C. Zhang. (2025). Research advances in coal-based syngas to aromatics technology. Clean Energy, 9(5), 136–152.

J. He, G. Tian, D. Liao, Z. Li, Y. Cui, F. Wei, C. Zeng, & C. Zhang. (2025). Mechanistic insights into methanol conversion and methanol-mediated tandem catalysis toward hydrocarbons. Journal of Energy Chemistry.

H. Xiong, Y. C. Wang, X. Liang, M. Zhao, G. Tian, G. Wang, L. Gu, & X. Chen. (2025). In situ quantitative imaging of nonuniformly distributed molecules in zeolites. Journal of the American Chemical Society, 147(32), 28965–28972.

Z. Li, J. Chen, G. Xu, Z. Tang, X. Liang, G. Tian, F. Lu, Y. Yu, Y. Wen, & J. Yang. (2025). Constructing three-dimensional covalent organic framework with aea topology and flattened spherical cages. Chemistry of Materials, 37(5), 1942–1948.

Kuruba Chandrakala | Machine Learning and Statistics | Best Researcher Award

Dr. Kuruba Chandrakala | Machine Learning and Statistics | Best Researcher Award

Siddhartha Academy of Higher Education | India

Dr. Kuruba Chandrakala is an emerging researcher in the domains of computer vision, deep learning, and medical image processing, currently serving as Assistant Professor (Selection Grade) in the CSE department at Siddhartha Academy of Higher Education, Vijayawada. She earned her Ph.D. from NIT Tiruchirappalli, preceded by M.Tech in Computer Science and Engineering with distinction from JNTU Kakinada and B.Tech in the same discipline from JNTU Anantapur. She has qualified both NET and APSET examinations. Her professional trajectory includes roles as Head of Department (CSE-AIML) at Vignan’s Nirula Institute of Technology & Science for Women and previous teaching appointments at VNITSW and SITAM, along with industry experience as a System Engineer with Tata Consultancy Services. Her publication record comprises five Scopus indexed papers, four of which are in SCIE journals, two IEEE conference papers, and one book chapter; she also holds one patent. Her Scopus metrics include an h-index of 4, 10 documents, and 150 citations. Her research has addressed areas such as diabetic retinopathy segmentation, robust blood vessel detection, and image enhancement through deep learning architectures. She teaches courses including Deep Learning, Machine Learning, Big Data Analytics, Cloud Computing, and programming in C, C++, Java, and Python. She has earned numerous certifications from NPTEL, Coursera, Microsoft, IBM, and Wipro and received awards such as the NPTEL Discipline Star and Wipro Project Excellence Award. Her leadership and mentoring roles include serving as a mentor for Wipro TalentNext, nodal officer for Microsoft Upskilling and APSCHE virtual internship programs, and coordinator for various hackathons. She is a life member of professional bodies such as CSI, ISTE, IAENG, and IET, and has delivered several invited and guest lectures, contributing significantly to academic excellence and research advancement.

Profiles: Scopus Google Scholar Orcid

Featured Publications

Chandrakala, K., & Gopalan, N. P. (2025). 3DECNN: A novel method for segmentation of diabetic retinopathy in retinal fundus images using 3D-edge CNN. Neural Computing and Applications.

Kuruba, C., Sharmila, S. K., Mounika, V., Aswini, D., & Poojitha, G. (2023). Three layered security model to prevent credit card fraud using LBPH and CNN-ResNet architecture. International Conference on Hybrid Intelligent Systems, 422–428.

Dharmaiah, K., Mebarek-Oudina, F., Sreenivasa Kumar, M., & Chandra Kala. (2023). Nuclear reactor application on Jeffrey fluid flow with Falkner-Skan factor, Brownian and thermophoresis, non-linear thermal radiation impacts past a wedge. Journal of the Indian Chemical Society, 100(2), 117.

Kuruba, C., & Gopalan, N. P. (2023). Robust blood vessel detection with image enhancement using relative intensity order transformation and deep learning. Biomedical Signal Processing and Control, 86, 105195.

Kuruba, C., Pushpalatha, N., Ramu, G., Suneetha, I., Kumar, M. R., & Harish, P. (2023). Data mining and deep learning-based hybrid health care application. Applied Nanoscience, 13(3), 2431–2437.