Khurshid Hussain | Artificial Intelligence in Statistics | Research Excellence Award

Mr. Khurshid Hussain | Artificial Intelligence in Statistics | Research Excellence Award

Kiost | South Korea

Mr. Khurshid Hussain is a dynamic researcher whose work spans advanced automotive engineering, semiconductor design, integrated sensing and communications, and AI-driven signal processing, establishing him as a multidisciplinary contributor across next-generation wireless, cybersecurity, and intelligent vehicular systems. He holds a Master’s degree in Advanced Automotive Engineering from Sun Moon University, South Korea, where he specialized in high-performance millimeter-wave circuit design with emphasis on 60 GHz digital variable-gain amplifiers, beamforming architectures, low-power attenuators, and chip-level ISAC systems for secure and intelligent communication. His research extends into geomatics and remote sensing, focusing on multimodal mapping using optical, SAR, and LiDAR streams, change detection, 3D reconstruction, and uncertainty-aware geospatial pipelines, alongside self-supervised and weak-supervised learning approaches for large-scale spatial data modeling. He is the inventor of a patented transistor-array-based variable attenuator and has authored an expanding collection of peer-reviewed publications in leading journals such as Electronics, IEEE Access, Applied Sciences, and IEEE Transactions, addressing topics ranging from radar–communication co-design and ultrasonic 3D beamforming sensors to predictive maintenance of aerospace components, OTFS-based V2X ISAC architectures, and AI-enhanced signal intelligence. His scholarly profile includes 9 documents, 77 citations, and an h-index of 4, reflecting his growing influence in mmWave IC design, wireless sensing, and AI-integrated communication. Khurshid has delivered technical presentations at major international conferences covering maritime IT convergence, high-frequency amplifier design, battery analytics, advanced beamforming, and power-efficient RF front-end systems. His expertise spans Cadence, HFSS, Python, MATLAB, OrCAD, cybersecurity tools, and vector network analyzers, reinforced by experience in transceiver integration, AI-chip convergence, intrusion detection systems, battery research, and embedded engineering. Earlier, he completed his B.Sc. in Electrical Engineering with a focus on IoT-based renewable-energy automation, where he developed sensor-driven, cloud-connected, and energy-efficient systems. Fluent in English and active in multicultural environments, Khurshid is known for his creativity, leadership, communication skills, and passion for innovation, continually advancing secure, intelligent, and energy-efficient technologies for the automotive, wireless, and sensing industries.

Profiles: Scopus Google Scholar Orcid

Featured Publications

Hussain, K., & Yoo, J. (2025). Low-latency marine-based OTFS echo parameter estimation enabled by AI. Sensors, 25(23), Article 7104. DOI: 10.3390/s25237104

Hussain, K., Ali, E. M., Hussain, W., Raza, A., & Elkamchouchi, D. H. (2025). Robust OTFS-ISAC for vehicular-to-base station end-to-end sensing and communication. Electronics, 14(21), Article 4340. DOI: 10.3390/electronics14214340

Hussain, K., Jeon, W., Lee, Y., Song, I., & Oh, I. (2025). CMOS-compatible ultrasonic 3D beamforming sensor system for automotive applications. Applied Sciences, 15(16), Article 9201. DOI: 10.3390/app15169201

Hussain, K., & Oh, I. (2024). Joint radar, communication, and integration of beamforming technology. Electronics, 13(8), Article 1531. DOI: 10.3390/electronics13081531

Hussain, K., & Oh, I. (2024). Review of joint radar, communication, and integration of beam-forming technology. Preprint. DOI: 10.20944/preprints202404.0208.v1

Ki Ryong Kwon | Artificial Intelligence in Statistics | Best Faculty Award

Prof. Ki Ryong Kwon | Artificial Intelligence in Statistics | Best Faculty Award

Pukyong National University | South Korea

Professor Ki-Ryong Kwon is an eminent and highly respected scholar in electronics engineering, artificial intelligence, and computer science, serving as a leading Professor in the Division of Computer Engineering and AI at Pukyong National University, South Korea. he pursued his academic journey at Kyungpook National University, where he completed his bachelor’s, master’s, and doctoral degrees in Electronics Engineering, later advancing his research expertise through a prestigious postdoctoral fellowship at the University of Minnesota under the mentorship of Prof. Ahmed H. Tewfik, followed by a visiting scholar appointment at Colorado State University that further broadened his international academic exposure. Throughout his long-standing academic career, Professor Kwon has demonstrated exceptional leadership by serving as Dean of the College of Engineering, Vice-Dean of Engineering, Director of the Artificial Intelligence Lab, Director of the Center for Start-up Foundation, Director of the Center of IP Transfer, and Vice-Director of Industry-University Foundation Cooperation, contributing extensively to academic development, research infrastructure advancement, and student innovation ecosystems. Beyond the university environment, he has played influential strategic roles as Chairman of the Global Fintech Industry Promotion Center, Vice-Chairman of the Korea Cloud Association, Vice-Chairman of the Busan Federation of Service Industry, and Chair of the 4th Industrial Revolution Leadership Promotion Team for Busan City, where he has been instrumental in guiding regional and national initiatives in AI-driven transformation, digital economy growth, and emerging technology integration. His contributions to the global research community include major leadership roles in IEEE, the Korea Multimedia Society, the Korea Information Processing Society, and multiple international conferences where he has served as General Chair, Industrial Chair, Program Chair, and Organizing Chair. His research encompasses deep learning, digital watermarking, image forensics, signal processing, marine AI applications, smart digital-twin systems, cybersecurity, and intelligent multi-agent architectures. With approximately 118 published research documents, around 1,309 citations, and an estimated h-index in the mid-20s, he maintains a strong and influential academic footprint. Over his career, he has been honored with numerous Best Paper Awards, national recognitions, institutional leadership awards, and international distinctions that reflect his outstanding dedication to research excellence, innovation leadership, and the advancement of technology-driven societal development.

Profile: Scopus

Moumita Mukherjee | Machine Learning and Statistics | Best Researcher Award

Dr. Moumita Mukherjee | Machine Learning and Statistics | Best Researcher Award

Charite-University Medicine Berlin | Germany

Dr. Moumita Mukherjee is an accomplished health economist and digital health researcher with expertise in health systems research, machine learning applications in healthcare, and interdisciplinary teaching. She holds a PhD in Economics from the University of Calcutta, an MBA in Entrepreneurship, Innovation and Project Development from International Telematic University, and an MSc in Data Science from the University of Europe for Applied Sciences, Germany. Her professional experience spans both academic and applied research environments, including positions at Charite-University Medicine Berlin, the Indian Institute of Public Health in Shillong, and the Berlin School of Business and Innovation. She has contributed extensively to global health research focusing on digital transformation, equity in healthcare access, and the use of data-driven methods for improving health outcomes. Her body of work includes numerous peer-reviewed publications in leading journals such as Scientific Reports, Journal of Health, Population and Nutrition, Journal of Health Management, and International Journal for Equity in Health, as well as book chapters and authored volumes addressing child health, nutrition, and health equity. In her current role at Charite-University Medicine Berlin, she lectures on digital health and artificial intelligence, supervises master’s theses, and mentors students. With advanced technical proficiency in Python, STATA, and NVivo, she applies econometric, machine learning, and deep learning models to address complex public health and policy questions. Her interdisciplinary approach integrates health economics, digital innovation, and policy analysis to support equitable and sustainable health systems worldwide. Through her research, teaching, and mentorship, Dr. Moumita Mukherjee continues to bridge data science and health economics to shape the future of evidence-based global health policy and digital healthcare transformation.

Profiles: Google Scholar | Orcid

Featured Publications

Kiran Sree Pokkuluri | Machine Learning and Statistics | Excellence in Research Award

Prof. Dr. Kiran Sree Pokkuluri | Machine Learning and Statistics | Excellence in Research Award

Shri Vishnu Engineering College For Women | India

Prof. Dr. Kiran Sree Pokkuluri is a distinguished academician, researcher, and innovator in the field of Artificial Intelligence and Machine Learning with an illustrious career of academic and research excellence. Currently serving as Professor and Head of the Department of Computer Science and Engineering at Shri Vishnu Engineering College for Women, he has significantly contributed to advancing computational intelligence and data-driven innovation in academia and industry. He holds a Ph.D. in Artificial Intelligence from JNTU-Hyderabad and has an impressive scholarly record with over 100 research publications in reputed SCI and Scopus-indexed journals, a citation count exceeding 653, an h-index above 13, and an Documents exceeding 152, reflecting the global impact of his research. His research areas include Deep Learning, Healthcare Analytics, Bioinformatics, IoT Power Optimization, Big Data Analytics, and Cloud Computing. Dr. Sree has authored six textbooks with ISBNs on Artificial Intelligence, Machine Learning, and Deep Learning, and has filed and published six patents in the domains of AI and intelligent systems. His innovations such as the Hybrid Deep Neural ZF Network (HDNZF-Net) have set new benchmarks in real-time speech enhancement for speech-impaired individuals and IoT optimization. He has completed five major funded projects and collaborated with premier institutions including Stanford University through the UIF program, fostering cross-disciplinary innovation. A recognized thought leader, Dr. Sree serves as Editor-in-Chief, editorial board member, and reviewer for multiple international journals. His remarkable achievements have earned him prestigious recognitions like the Bharat Excellence Award and Rashtriya Ratan Award, and he has been featured in Marquis Who’s Who in the World. As Global Vice President of the World Statistical Data Analysis Research Association (WSA) and a member of professional bodies such as IEEE, ISTE, CSI, and IAENG, Dr. Kiran Sree continues to inspire excellence in AI-driven research, education, and technological innovation.

Profiles: Scopus Google Scholar | Orcid

Featured Publications

Venkatachalam, B., Pokkuluri, K. S., Suguna Kumar, S., Dhandapani, A., & Bhonsle, M. (2025). Adaptive fuzzy heuristic algorithm for dynamic data mining in IoT integrated big data environments. Journal of Fuzzy Extension and Applications, 6(3), 615–636.

Pokkuluri, K. S., Sarkar, P., Birchha, V., Mathariya, S. K., Veeramachaneni, V., & others. (2025). Intelligent reasonable optimization for virtual machine provisioning in hybrid cloud using fuzzy AHP and cost-effective autoscaling. SN Computer Science, 6(7), 1–15.

Sivanuja, M., Raju, P. J. R. S., Prasad, M., RR, P. B. V., Kumar, K. S., & Pokkuluri, K. S,. (2025). A novel ensemble-based deep learning framework combining CNN and transfer learning models for enhanced wildfire detection. In Proceedings of the 2025 International Conference on Computational Robotics, Testing and Applications.

Alzubi, J. A., Pokkuluri, K. S., Arunachalam, R., Shukla, S. K., Venugopal, S., & others. (2025). A generative adversarial network-based accurate masked face recognition model using dual scale adaptive efficient attention network. Scientific Reports, 15(1), 17594.

Pokkuluri, K. S., Chandanan, A. K., Mishra, A. K., Jyothi, D., Lavanya, M. S. S. L., & others. (2025). Deep learning-enhanced intrusion detection and privacy preservation for IIoT networks. In Proceedings of the 2025 4th International Conference on Distributed Computing and Electrical Systems.

Guo Tian | Machine Learning and Statistics | Best Researcher Award

Assoc Prof. Dr. Guo Tian | Machine Learning and Statistics | Best Researcher Award

Tsinghua University | China

Assoc Prof. Dr. Guo Tian is an accomplished young chemical engineer whose research lies at the frontier of sustainable catalysis and CO₂/CO conversion. He earned his Bachelor’s degree in Chemical Engineering under Prof. Xuezhi Duan at the East China University of Science and Technology and pursued his doctoral studies in Chemical Engineering at Tsinghua University under the guidance of Prof. Fei Wei. Following his doctoral training, he joined Southwest Jiaotong University as an Associate Professor and Principal Investigator. At only twenty-five years of age, Guo has led pioneering work on high-pressure thermo-catalytic systems, including the design of a reactor capable of stable operation at up to 60 bar integrated with surface-enhanced infrared absorption spectroscopy (SEIRAS) for in-situ monitoring of reaction intermediates. His studies have revealed critical mechanistic pathways in CO/CO₂ conversion using bifunctional catalysts, identifying oxygenate intermediates as key to improving the traditional methanol-to-hydrocarbons (MTH) mechanism. Drawing inspiration from biological systems, he has advanced the concept of bio-inspired multifunctional catalysts and introduced the innovative idea of “catalytic shunt” strategies to enhance selectivity and efficiency. Combining experimental research with density-functional theory (DFT) and micromodel simulations, his work bridges molecular-level understanding with reactor-scale engineering. Dr. Tian has authored numerous influential publications in high-impact journals such as Nature Sustainability, Nature Communications, ACS Catalysis, and the Journal of the American Chemical Society. Notable among these are “Efficient syngas conversion via catalytic shunt” (Nature Sustainability), and “Upgrading CO₂ to sustainable aromatics via perovskite-mediated tandem catalysis” (Nature Communications). According to his Scopus profile, he has authored 14 documents, accumulated around 297 citations, and holds an h-index of 9, reflecting a strong and growing impact in the field. His expertise includes thermochemical measurement and data analysis, catalytic materials design, reactor and reaction-system development, in-situ spectroscopy (SEM, XRD, XPS, XAS), and DFT-based theoretical modeling. Integrating theory, advanced characterization, and engineering innovation, Guo Tian’s vision focuses on transforming CO₂ and CO into high-value sustainable fuels such as aviation fuel components, contributing to global carbon-neutral energy goals. Through his scientific rigor, leadership, and creativity, he has rapidly emerged as a rising star in heterogeneous catalysis and sustainable chemical engineering.

Profiles: Scopus Google Scholar Orcid

Featured Publications

M. Zhao, Q. Wu, X. Chen, H. Xiong, G. Tian, L. Yan, F. Xiao, & F. Wei. (2025). Entropy-governed zeolite intergrowth. Journal of the American Chemical Society.

Z. Wang, X. Liu, G. Tian, Z. Wang, L. Li, F. Lu, Y. Yu, Z. Li, F. Wei, & C. Zhang. (2025). Research advances in coal-based syngas to aromatics technology. Clean Energy, 9(5), 136–152.

J. He, G. Tian, D. Liao, Z. Li, Y. Cui, F. Wei, C. Zeng, & C. Zhang. (2025). Mechanistic insights into methanol conversion and methanol-mediated tandem catalysis toward hydrocarbons. Journal of Energy Chemistry.

H. Xiong, Y. C. Wang, X. Liang, M. Zhao, G. Tian, G. Wang, L. Gu, & X. Chen. (2025). In situ quantitative imaging of nonuniformly distributed molecules in zeolites. Journal of the American Chemical Society, 147(32), 28965–28972.

Z. Li, J. Chen, G. Xu, Z. Tang, X. Liang, G. Tian, F. Lu, Y. Yu, Y. Wen, & J. Yang. (2025). Constructing three-dimensional covalent organic framework with aea topology and flattened spherical cages. Chemistry of Materials, 37(5), 1942–1948.

Kuruba Chandrakala | Machine Learning and Statistics | Best Researcher Award

Dr. Kuruba Chandrakala | Machine Learning and Statistics | Best Researcher Award

Siddhartha Academy of Higher Education | India

Dr. Kuruba Chandrakala is an emerging researcher in the domains of computer vision, deep learning, and medical image processing, currently serving as Assistant Professor (Selection Grade) in the CSE department at Siddhartha Academy of Higher Education, Vijayawada. She earned her Ph.D. from NIT Tiruchirappalli, preceded by M.Tech in Computer Science and Engineering with distinction from JNTU Kakinada and B.Tech in the same discipline from JNTU Anantapur. She has qualified both NET and APSET examinations. Her professional trajectory includes roles as Head of Department (CSE-AIML) at Vignan’s Nirula Institute of Technology & Science for Women and previous teaching appointments at VNITSW and SITAM, along with industry experience as a System Engineer with Tata Consultancy Services. Her publication record comprises five Scopus indexed papers, four of which are in SCIE journals, two IEEE conference papers, and one book chapter; she also holds one patent. Her Scopus metrics include an h-index of 4, 10 documents, and 150 citations. Her research has addressed areas such as diabetic retinopathy segmentation, robust blood vessel detection, and image enhancement through deep learning architectures. She teaches courses including Deep Learning, Machine Learning, Big Data Analytics, Cloud Computing, and programming in C, C++, Java, and Python. She has earned numerous certifications from NPTEL, Coursera, Microsoft, IBM, and Wipro and received awards such as the NPTEL Discipline Star and Wipro Project Excellence Award. Her leadership and mentoring roles include serving as a mentor for Wipro TalentNext, nodal officer for Microsoft Upskilling and APSCHE virtual internship programs, and coordinator for various hackathons. She is a life member of professional bodies such as CSI, ISTE, IAENG, and IET, and has delivered several invited and guest lectures, contributing significantly to academic excellence and research advancement.

Profiles: Scopus Google Scholar Orcid

Featured Publications

Chandrakala, K., & Gopalan, N. P. (2025). 3DECNN: A novel method for segmentation of diabetic retinopathy in retinal fundus images using 3D-edge CNN. Neural Computing and Applications.

Kuruba, C., Sharmila, S. K., Mounika, V., Aswini, D., & Poojitha, G. (2023). Three layered security model to prevent credit card fraud using LBPH and CNN-ResNet architecture. International Conference on Hybrid Intelligent Systems, 422–428.

Dharmaiah, K., Mebarek-Oudina, F., Sreenivasa Kumar, M., & Chandra Kala. (2023). Nuclear reactor application on Jeffrey fluid flow with Falkner-Skan factor, Brownian and thermophoresis, non-linear thermal radiation impacts past a wedge. Journal of the Indian Chemical Society, 100(2), 117.

Kuruba, C., & Gopalan, N. P. (2023). Robust blood vessel detection with image enhancement using relative intensity order transformation and deep learning. Biomedical Signal Processing and Control, 86, 105195.

Kuruba, C., Pushpalatha, N., Ramu, G., Suneetha, I., Kumar, M. R., & Harish, P. (2023). Data mining and deep learning-based hybrid health care application. Applied Nanoscience, 13(3), 2431–2437.

Tushar Bhoite | Bayesian Networks and Decision Theory | Best Researcher Award

Dr. Tushar Bhoite | Bayesian Networks and Decision Theory | Best Researcher Award

Dr. Tushar Bhoite | MES’s Wadia College of Engineering | India

Dr. Tushar Devidas Bhoite, Ph.D. in Mechanical Technology, M.E. in Machine Design, with over sixteen years of professional experience (including twelve in the automobile industry and four in academics), is a leading researcher and practitioner in integrating advanced IT technologies in auto-component manufacturing. His research interests encompass Industry 4.0, Industrial Internet of Things (IIoT), Digital Twin systems, Generative AI, predictive maintenance, neural and Bayesian networks, real-time monitoring, optimization and efficiency improvements in production environments. To date, he has authored 6 international journal papers and 3 international conference papers, co-authored 2 textbooks, and filed 2 patents, contributing to both theoretical and applied advancements. His master’s project, awarded from RGSTC Mumbai, stands as a landmark in his research portfolio, he has an h-index of 1 and over 1 citations as per his Scopus profile, reflecting strong scholarly impact. In his industrial roles, Dr. Bhoite has successfully led IOT implementations in assembly and press shops, improved Overall Equipment Effectiveness, standardized work systems, deployed TPM and Kaizen methodologies, and developed innovative solutions such as a wet-waste treatment machine. He currently serves as Assistant Professor in Automation & Robotics Engineering at MES’s Wadia College of Engineering, Pune, and continues consulting in production efficiency, resource optimization, and technology integration in manufacturing enterprises.

Profiles: Scopus Google Scholar Orcid

Featured Publications

Bhoite, T. D., Pawar, P. M., & Gaikwad, B. D. FEA based study of effect of radial variation of outer link in a typical roller chain link assembly. International Journal of Mechanical and Industrial Engineering, 1, 65–70.

Bhoite, T. D., & Buktar, R. B. (2025). Productivity enhancement in Indian auto component manufacturing supply chain with IoT using neural networks. Production, 35, e20240047.

Bhoite, T. D., Buktar, R. B., Mahalle, P. N., Khond, M. P., Pise, G. S., & More, Y. Y. (2025). Productivity enhancement in the Indian auto component manufacturing supply chain through IoT, digital twins with generative AI, and stacked encoder-enhanced neural networks. Operations Research Forum, 6(4), 143.

Bhoite, D. T., & Buktar, R. (2025). An investigation into revolutionizing auto component manufacturing: An IoT-based approach for improved productivity and waste elimination. Journal of Information Systems Engineering and Management, 10(9s), 409–429.

Bhoite, D. T., Buktar, R., & Kannukkadan, G. (2024). Leveraging IoT in auto component manufacturing to monitor surface roughness and tool temperature. Journal of Electrical Systems, 20(2s), 563–574.*

Changqing Cao | High-Dimensional Data Analysis | Best Researcher Award

Prof. Dr. Changqing Cao | High-Dimensional Data Analysis | Best Researcher Award

Prof. Dr. Changqing Cao | Xidian University | China

Dr. Cao Changqing is a distinguished researcher in the field of optoelectronic technology, remote sensing, and artificial intelligence–based image processing. With a career rooted in innovation and discovery, he has consistently contributed to advancing the frontiers of photonics and optical engineering. His dedication to academic excellence is reflected in his extensive involvement in high-impact publications, editorial roles, and global scientific recognition. A lifelong learner and mentor, Dr. Cao has guided numerous projects that bridge theoretical frameworks with practical applications, creating lasting impact across industries and research communities. His recognition as one of the world’s top scientists underscores the breadth of his expertise and the significance of his research contributions. Through his work, Dr. Cao has earned a reputation not only as a skilled academic but also as a visionary scientist committed to developing cutting-edge technologies that benefit society and foster interdisciplinary collaboration.

Profiles

Orcid
Scopus

Education

Dr. Cao pursued his higher education at Xidian University, where he dedicated nearly a decade to mastering the intricacies of optical engineering. Beginning with a foundation in undergraduate studies, he advanced seamlessly into postgraduate research, ultimately earning his doctorate in the same field. His academic journey was marked by an immersion in the principles of photonics, laser systems, and advanced optical imaging, disciplines that later became central to his professional expertise. The rigorous training he received equipped him with both theoretical knowledge and experimental skills, enabling him to explore challenging problems in optoelectronics. His progression from bachelor’s to doctoral studies at the same institution reflects a continuous commitment to deep specialization while maintaining a broad perspective on technological applications. This academic background provided the cornerstone for his innovative research career, nurturing the analytical rigor and creativity that define his scholarly contributions to modern optical and remote sensing technologies.

Experience

Dr. Cao began his professional career at Xidian University, where he continues to serve as a faculty member specializing in optoelectronics engineering. Over the years, he has developed a strong academic and professional identity by combining teaching, research, and scientific leadership. His responsibilities span supervising advanced research projects, mentoring young scholars, and contributing to international collaborations. Dr. Cao’s experience has also extended into peer-review and editorial activities for leading scientific journals such as those under the OSA Optica Publishing Group, IEEE, MDPI, and Wiley. Serving as both a reviewer and an editor has positioned him at the forefront of evaluating and shaping scientific advancements in his field. His work is characterized by a blend of experimental exploration and applied engineering, ensuring that his research remains both academically rigorous and technologically relevant. This long-standing experience illustrates his dedication to scientific excellence and knowledge dissemination worldwide.

Research Interests

Dr. Cao’s research interests lie at the intersection of optoelectronic technology, remote sensing, and artificial intelligence–driven image analysis. His work often bridges fundamental optical theories with advanced engineering practices, producing solutions that enhance imaging quality, detection accuracy, and data interpretation in complex environments. He has explored areas such as optical heterodyne detection, interferometric imaging, and laser dynamics, with applications spanning satellite imaging, photonics integration, and high-speed optical systems. A key theme of his research is the application of machine learning and clustering algorithms to improve image processing and modulation format identification, which has direct relevance in communication and sensing technologies. He has also contributed significantly to the study of light scattering, compressed sensing in remote imaging, and phase compensation algorithms. This combination of expertise highlights his versatility in applying optics and AI to solve real-world challenges, reflecting both innovative thinking and a strong commitment to interdisciplinary advancement.

Awards Recognitions

Dr. Cao’s career is his recognition in the prestigious Top Two Percent Global Scientists List, which highlights his global influence and outstanding contributions to optical engineering. This honor underscores the impact of his research and the high regard in which he is held within the international scientific community. Beyond this recognition, Dr. Cao’s roles as an editor and reviewer for top-tier journals further attest to his academic reputation and professional achievements. These positions not only reflect his expertise but also demonstrate his responsibility in guiding the quality of global scientific literature. His award recognition is a testament to his years of dedication, continuous innovation, and ability to address complex problems in optoelectronics. Such honors contribute to cementing his position as a thought leader whose work inspires fellow researchers and fosters the next generation of advancements in photonics and remote sensing.

Publication Top Notes

An Improved Satellite ISAL Imaging Vibration Phase Compensation Algorithm Based on Prior Information and Adaptive Windowing

Journal: Remote Sensing (2025)
Authors: Chenxuan Duan, Hongyuan Liu, Xiaona Wu, Jian Tang, Zhejun Feng, Changqing Cao

Calibration of 16 × 16 SOI optical phased arrays via improved SPGD algorithm

Journal: Optics and Laser Technology (2023)
Authors: Z. Wang, B. Wu, J. Liao, X. Li, C. Wang, Y. Sun, L. Jin, J. Feng,  Changqing Cao

Factors influencing the performance of optical heterodyne detection system

Journal: Optics and Lasers in Engineering (2023)
Authors: Z. Wu, C. Cao, Z. Feng, S. Ye, M. Li, B. Song, R. Wei

Improving distance imaging accuracy through temporal position correction with phase difference compensation

Journal: Applied Optics (2023)
Authors: Z. Wu, C. Cao, Z. Feng, X. Wu, C. Duan, H. Liu

Innovative OPA-based optical chip for enhanced digital holography

Journal: Optics Express (2023)
Authors: Z. Wang, L.I.U. Linke, P. Jiang, J. Liao, X.U. Jiamu, S.U.N. Yanlnig, J.I.N. Li, L.U. Zhenzhong, J. Feng, C. Cao

Conclusion

Dr. Cao Changqing embodies the qualities of a dedicated researcher, visionary innovator, and respected academic leader. His journey through higher education, research, and professional service demonstrates a lifelong commitment to pushing the boundaries of knowledge in optoelectronics and photonics. With an impressive body of published work, editorial engagements, and global recognition, he has established himself as a prominent figure in the scientific community. His achievements illustrate not only personal excellence but also a broader contribution to advancing the capabilities of imaging and optical systems for diverse applications. As an educator, he inspires students and collaborators, fostering an environment of curiosity and innovation. As a scientist, he delivers groundbreaking work that continues to shape the field. With such a strong record of achievements, Dr. Cao represents the ideal candidate for prestigious recognition, serving as a role model for future generations of researchers and a driving force in global technological progress.